

বিদ্যাসাগর বিশ্ববিদ্যালয় VIDYASAGAR UNIVERSITY

Question Paper

B.Sc. Honours Examinations 2021

(Under CBCS Pattern)

Semester - VI

Subject: PHYSICS

Paper : C 13-T & P

Electromagnetic Theory

Full Marks : 60 (Theory-40 + Practical-20) Time : 3 Hours

Candidates are required to give their answers in their own words as far as practicable. The figures in the margin indicate full marks.

[Theory]

Group - A

Answer *any two* of the following: 2×1

2×15=30

- 1. (a) Write down the Maxwell's field equations with physical significance. (4)
 - (b) Explain why and how Ampere's circuital law is modified to include displacement current.
 (3)
 - (c) Show that the equation of continuity is contained in Maxwell's equations.

(3)

- (d) Give the physical significance of displacement current. (2)
- (e) Consider a medium dielectric constant $\mathcal{E}_r = 80$ and conductivity $\sigma = 10^{-3} (\Omega - m)^{-1}$. Compare the value of conduction and displacement current densities at frequencies 100 Hz and 100 MHz. (3)
- 2. (a) Define 'skin depth'. Deduce the expression for 'skin depth' in case of propagation of electromagnetic waves through a conducting medium having permeability μ and permittivity ε.
 - (b) The electric field intensity of a plane wave in air is given by

 $\vec{E} = 4 \times 10^{-6} \times \cos(10^7 \,\pi t - kz)\hat{i} + 4 \times 10^{-6} \times \sin(10^7 \,\pi t - kz)\hat{j} \ V/m$. Find the values of k, corresponding magnetic field. (3)

- (c) What is radiation pressure? (1)
- (d) What is a quarter wave plate? (1)
- (e) Discuss how a quarter wave plate can be used to produce circularly and elliptically polarized light.
 (4)
- 3. (a) What are the s-polarization and p-polarization of an electromagnetic wave? How the concept of Brewster's angle explained for p-polarized wave in specific conditions? (2+2)
 - (b) Show the variation in amplitude coefficients for *s*-polarized and *p*-polarized waves (going from air to glass) as a function of angle of incidence and explain.

(2+2)

- (c) The specific rotation of the quartz for $\lambda = 508.6$ nm is 29.73 deg/mm. Calculate the difference between the refractive indices for left and right circularly polarized light for quartz. (2)
- (d) Explain the phenomenon of double refraction in a uniaxial crystal by Huygens' theory.

- 4. (a) Calculate numerical aperture of an optical fibre.
 - (b) A step index fibre has a core of refractive index 1.50 and a cladding of refractive index 1.40. If the fibre is used in a water environment, find its numerical aperture and the acceptance angle. Take the refractive index of water as 1.33.
 - (c) What do you mean by a graded index fibre? Discuss its advantages over a step index fibre.(3)
 - (d) Show that normal component of electric displacement vector is not continuous at the boundary. (3)
 - (e) For transverse electric waves propagating along rectangular waveguide with perfectly conducting walls find expression for cut off wavelength.
 (3)

Group - B

Answer *any one* of the following: $1 \times 10 = 10$

- 5. (a) State and establish Poynting theorem in electromagnetism. (2+4)
 - (b) Explain the significance of Poynting vector. Find the dimension of Poynting vector. (1+1)
 - (c) The maximum value of the \vec{E} field of an electromagnetic wave in free space is 1000 V/m. Find the maximum value of the \vec{H} field of the wave. (2)
- 6. (a) Prove that $n^2 = 1 \frac{\omega_p^2}{\omega^2}$ for e. m. wave moving with frequency ω in plasma. Where n is the refractive index, and ω_p is the plasma frequency.

(4)

(2)

(b) Calculate the frequency at which the skin depth in sea water is 1 m. $\sigma = 4.3$ S/m and $\mu_0 = 4\pi \times 10^{-7}$ H/m (3)

	Answer <i>any one</i> of the following:	1×20=20	
1 ח	atoming the relationship between the intensity of the transmitted light through	ah analyzar	
1. Determine the relationship between the intensity of the transmitted light through analyzer and \dot{O} the angle between the axes of polarizer and analyzer and to verify Malus			
Law. Write on the following points:			
(a)	Apparatus used	(2)	
(b)	Schematic diagram	(3)	
(c)	Theory with working formula	(3+1)	
(d)	Procedure	(6)	
(e)	Give sample plots of θ versus intensity and also $\cos^2 \theta$ versus intensity	. (3)	
(f)	State what types of precautions should be taken.	(2)	
2. D	etermine the specific rotation (s) of a sugar solution using Polarimeter. W	/rite on the	
fo	llowing points:		
(a)	Apparatus used	(2)	
(b)	Schematic diagram	(3)	
(c)	Theory with working formula	(3+1)	
(d)	Procedure	(6)	
(e)	Give a sample plot of c (concentration) versus θ (rotation produced by	y the sugar	
	solution). Also mention clearly how one can measure <i>s</i> .	(3)	
(f)	State what types of precautions should be taken.	(2)	
3. Verify the Stefan's law of radiation. Write on the following points:			
(a)	Apparatus used	(2)	
(b)	Circuit diagram	(3)	

(c)	Principle	(4)
(d)	Procedure	(6)
(e)	Give a sample plot of $logR$ (R, Filament Resistance) $logP$ (P, Power radia Also mention clearly how one can verify the Stefan's law of radiation.	(3)
(f)	State what types of precautions should be taken.	(3)
	asaa university	